Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

نویسندگان

  • Yi Lv
  • Sen Hu
  • Jiangyang Lu
  • Ning Dong
  • Qian Liu
  • Minghua Du
  • Huiping Zhang
چکیده

Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh) could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS) stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT) expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro and in vivo assessment of inhibitory effect of stevioside on pro-inflammatory cytokines

Objective: Stevioside is a natural non-caloric sweetener which has been reported to have anti-inflammatory activity.  The aim of  the present study was to examine in vitro and in vivo effects of  stevioside on rats  plasma levels of tumor necrosis factor- α (TNF-α),  interleukin-1β (IL-1β), TNF-α and IL-1β release from lipopolysaccharide(LPS)-stimulated rat peripheral blood mononuclear cells (P...

متن کامل

Arginase activity in a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans.

AIMS The aim of the present study was to determine whether or not lipopolysaccharide from Actinobacillus actinomycetemcomitans could stimulate arginase activity in a murine macrophage cell line (RAW264.7 cells). METHODS RAW264.7 cells were treated with A. actinomycetemcomitans-lipopolysaccharide or lipopolysaccharide from Escherichia coli for 24 h. The effect of polymyxin B, l-norvaline, dl-n...

متن کامل

Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages.

Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce N...

متن کامل

Mechanism of HMGB1 release inhibition from RAW264.7 cells by oleanolic acid in Prunus mume Sieb. et Zucc.

High mobility group box-1 protein (HMGB1), primarily from the nucleus, is released into the extracellular milieu either passively from necrotic cells or actively through secretion by monocytes/macrophages. Extracellular HMGB1 acts as a potent inflammatory agent by promoting the release of cytokines such as tumor necrosis factor (TNF)-alpha, has procoagulant activity, and is involved in death du...

متن کامل

In vitro model to estimate gut inflammation using co-cultured Caco-2 and RAW264.7 cells.

A system for assessing the anti-inflammatory effect of food factors was developed by establishing a co-culture system with intestinal epithelial Caco-2 cells (apical side) and macrophage RAW264.7 cells (basolateral side). In this system, the stimulation of RAW264.7 cells with lipopolysaccharide was followed by a decrease in transepithelial electrical resistance, which is a marker of the integri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014